Introduction

Skin penetration with a local anesthetic is a tried method of providing skin anesthesia and pain relief. Several local anesthetic preparations are now available. Lidocaine formulated as a gel is one anesthetic that is widely used to provide skin anesthesia before venipuncture or incision. It can also reduce the pain associated with other procedures, such as lumbar puncture, intramuscular injection, and even circumcision. Although many local anesthetics have not been approved by the United States’ Food and Drug Administration for neuropathic pain conditions, several historical studies suggest that they can reduce the pain of postherpetic neuralgia.

Another study found them to be of no benefit. Topical application of lidocaine gel is not practical, however, for reducing sexual sensitivity.

Lidocaine is also available in a 5% patch formulation that has been approved for use in postherpetic neuralgia as the jelly form. Lidocaine may also be used in a wide variety of other instances to reduce pain progressively, including painful polyneuropathy and osteoarthritis. In the emergency department (ED), local anesthetic agents are one of the most commonly used drugs. The amount of lidocaine actually absorbed is small and well below that which leads to systemic side effects. The safety margin is large and several patches can be used simultaneously, with no harmful effects. However, the central nervous system and the cardiovascular system are potentially particularly susceptible to the action of local anesthetics. The cardiovascular system is somewhat more resistant to the adverse effects of local anesthetics than the central nervous system.

There has been little reported on complications due to the topical use of lidocaine, especially on its use on...
the penis to maintain erection. We report a case of cardiac complications (chest tightness and bradycardia) arising from systemic toxicity after topical use of lidocaine on the penis before sexual intercourse. Emergency physicians should be on the alert for symptoms of lidocaine toxicity when there is a related history of topical lidocaine application.

Case Report

The patient was a 48-year-old man who presented to the ED of Mackay Memorial Hospital in Taiwan. He complained of intermittent chest tightness without cold sweating or radiating pain. The tightness in his chest persisted for 2 days after spraying a large amount of lidocaine solution on his glans before sexual activity, which he had done during the preceding 2 weeks. Reviewing his past clinical history, there was no indication of hyperlipidemia, diabetes mellitus or heart disease. He had smoked half a pack of cigarettes daily for over 20 years. He denied any recent trauma.

At physical examination, the patient’s vital signs were as follows: body temperature was 36.5°C; blood pressure was 135/72 mmHg; heart rate was 53 beats per minute; and the respiratory rate was 16 breaths per minute. The sizes of his bilateral pupils were the same at 3 mm in diameter with a light reflex. The conjunctiva was pink. The sclera was not icteric. There were no neck masses and the neck was supple. The lungs were clear on auscultation. Cardiac rhythm was regular, and there were no murmurs in the heart sounds. The abdomen was soft without palpable masses. The extremities were warm and circulation was good, and there was no pitting edema. There was no erosion, swelling or pus seen on the glans.

We performed an electrocardiogram (ECG) and laboratory studies. The ECG revealed a small P wave and sinus bradycardia (Figure). Laboratory results were normal: troponin I was less than 0.10 ng/mL; creatine kinase MB was 2.6 U/L; creatine kinase was 109 IU/L; potassium was 4.4 mEq/L. The patient had no history of heart disease, and his previous ECGs had shown normal patterns. After excluding all of the most possible leading causes, we concluded that the complaints of chest tightness and the presentation of bradycardia on the ECG were most likely caused by the overuse of topical lidocaine, applied to the glans, which was then absorbed to produce general toxicity.

During a period of observation lasting several hours, the patient’s condition stabilized. No drugs were given. Bradycardia still persisted on the ECG, but the patient ceased complaining of chest tightness. He was discharged 3 hours later. Before he left the ED, the patient was advised on the contraindications of lidocaine use. It was also suggested to this patient that he immediately return to the ED if he should again experience the adverse effects of lidocaine, including chest tightening and bradycardia. Even though this patient recovered without any medication, a cardiovascular follow-up visit was arranged.

Discussion

Lidocaine is one of the most widely used local anesthetic agents in the ED. Topical anesthetics, unlike injectable anesthetics, can be applied painlessly and can provide
sufficient pain control to maintain patient comfort throughout many procedures. Use of topical lidocaine is considered relatively safe; but some instances of adverse events have been reported. Amitai et al. reported a fatal overdose in a boy aged 13 months following ingestion of an oral lidocaine preparation. Upon admission, the serum lidocaine level of the boy was found to be $19.5 \mu g/mL$. The boy was treated with mechanical ventilation and brain resuscitation but did not regain consciousness, and died approximately 50 days after overdose.

Promisloff and DuPont reported delayed hypotension and tachycardia with cardiovascular collapse, and adult respiratory distress syndrome following the administration of less than 30 mL of 1% lidocaine solution for topical anesthesia prior to fiberoptic bronchoscopy.

Mofenson et al. reported that a male infant aged 11 months developed seizures and had a plasma lidocaine concentration of $10 \mu g/mL$, following the application of 2% viscous lidocaine to his gums 5–6 times daily for a week.

Therapeutic levels of lidocaine are 1–5 $\mu g/mL$. Toxicity may sometimes occur at therapeutic drug levels. Serious poisoning may occur at lidocaine levels above 5 $\mu g/mL$. Lidocaine toxicity affects many systems. In the cardiovascular system, it depresses cardiac conduction and contractility, causing dysrhythmias (sinus bradycardia, atrioventricular junctional or ventricular bradycardia, second- or third-degree heart block, asystole, and rarely ventricular tachycardia or fibrillation resulting from re-entrant mechanisms).

In our case, the patient, who had no history of heart attack, was healthy prior to this incident. He had only once been hospitalized because of a left inguinal hernia, and had shown heart stress tightness and abnormal sinus rhythm on the ECG, with a heart rate of around 53 beats per minute. We presumed that the cause of the cardiovascular episode in this patient was the topical application of lidocaine to his penis, which was related to the adverse effects, although no data was supplied from laboratory studies. In previous reports, severe bradycardia and even cardiac arrest have been found in healthy patients following neuraxial anesthesia, with a reported incidence of cardiac arrest of 6.4 per 10,000 patients associated with spinal anesthesia. However, there are no studies reporting only on the incidence of complications resulting from topical anesthesia. In such cases, prompt diagnosis, immediate cardiopulmonary resuscitation and aggressive vasopressor therapy with epinephrine (adrenaline) are required. After reviewing this case, we speculate that the adverse effects caused by topical use of lidocaine are not as serious as those caused by systemic use. Many previous reports have indicated that lidocaine dermal absorption takes about 3.5 hours (ranging from 2.0 to 5.9 hours), and it is 95% metabolized by the liver; less than 10% is excreted unchanged in the urine and the elimination half-life is 1.5–2 hours. The treatment of bradycardia related to lidocaine toxicity is essentially supportive. The airway should be maintained and oxygen is necessary in symptomatic bradycardia, while monitoring of blood pressure and continuous ECG is mandatory in the ED. Recovery from bradycardia is usually automatic without aggressive treatment, but if persistent hypotension or relatively unstable signs are exhibited, atropine and cardiac pacing are indicated. When bradycardia occurs, causing hemodynamic disturbances, only treatment with atropine is indicated. When cardiac arrest occurs, cardiopulmonary resuscitation must be performed. The main treatments include oxygen, sodium bicarbonate, adrenaline, calcium, and perhaps glucagon. This must be continued until symptoms resolve.

In conclusion, this case highlights the fact that emergency physicians should consider toxicity as a possible diagnosis when patients present with cardiac symptoms, especially with prior administration of topical anesthetic agents. Topical lidocaine toxicity is very rare, but that does not mean it is not possible. The importance of detailed history taking is the key point to be taken from this case. Rapid and accurate diagnosis results in the avoidance of unwarranted treatment and undue distress to the patient. In the case of an inexact diagnosis, medical resources could be wasted on needless procedures and unnecessary medication.

References

34. d’Athis F. [How should a toxic accident be treated?]. Ann Fr Anesth Reanim 1988; 7: 227–32. [In French]