NON-MOTOR SYMPTOMS OF PARKINSON’S DISEASE

Jyh-Gong Gabriel Hou*, Eugene C Lai
Parkinson’s Disease Research, Education and Clinical Center, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA

SUMMARY

In addition to the typical motor symptoms (resting tremor, cogwheel rigidity, bradykinesia, postural instability) of Parkinson’s disease (PD), non-motor symptoms are sources of considerable burden in people with PD, especially in elderly patients. The usual non-motor symptoms include cognitive declines, psychiatric disturbances (depression, psychosis, impulse control), autonomic failures (gastrointestinal, cardiovascular, urinary, sexual ability, thermoregulation), sleep difficulties, and pain syndrome. This review article discusses the characteristics, pathophysiology, epidemiology, and management of these symptoms. [International Journal of Gerontology 2007; 1(2): 53–64]

Key Words: dementia, depression, dysautonomia, non-motor symptoms, Parkinson’s disease, psychosis, sleep

Introduction

Parkinson’s disease (PD), first described by James Parkinson in 1817, is a chronic, progressive neurodegenerative disorder1. The pathologic hallmark is a deterioration of the substantia nigra of yet unknown causes, resulting in a deficiency of dopamine, an important neurotransmitter for the basal ganglia circuit. Its typical clinical symptoms are resting tremor, cogwheel rigidity, bradykinesia, and postural instability. Many affected patients are older than 55 years of age, and men seem to be slightly more predominantly affected than women2.

While PD is mainly regarded as a movement disorder, patients suffer from not only motor symptoms, but also the non-motor symptoms which are also common and can significantly debilitate patients’ activities as well as the quality of life. These complications include cognitive, psychiatric, autonomic, sleep and sensory disorders (Table). The non-motor symptoms may appear even before the motor symptoms are first noticed. But they are more troublesome in the more advanced stages of PD, when they can become major problems for the patients and often pose a challenge to the treating physicians3,4. With multiple medications often being used to treat PD, their side effects may further exacerbate the problems.

Epidemiology

Because of the varieties of symptoms, the prevalence of non-motor symptoms in PD patients is difficult to delineate precisely. It is estimated that about 16–70% of patients suffer from neuropsychiatric problems, including depression, anxiety, apathy or psychosis5–7. Cognitive deficits affect at least 20–40% of PD patients8–10. Sleep disturbances occur in more than a third of PD patients11,12. Dysautonomia, including constipation, orthostatic hypotension, urinary and sexual dysfunctions, is reported in more than half of the PD patients, according to a questionnaire-based study13. This European study and other studies also suggest that autonomic failures, including orthostatic dizziness, bladder dysfunctions, erectile dysfunctions and hyperhidrosis, are more prevalent in PD patients than control individuals.
without PD. These symptoms had a huge impact on their quality of life13-15. Using a comprehensive symptom survey, Siddiqui et al.16 reported a significantly higher prevalence rate of increased salivation, dysphagia, decreased bowel movement, and orthostatic dizziness in PD patients compared with controls. Two studies showed that cardiac uptake of metaiodobenzylguanidine, an index of functional integrity and function of postganglionic neurons, was impaired in almost all patients with PD, independent of duration and severity of their parkinsonian symptoms17,18.

Pathophysiology

Since non-motor symptoms comprise a variety of symptoms in different aspects, their involvement must be related to diffuse or multiple brain dysfunctions. Hallucination and psychosis can be related to the dopaminergic system in the prefrontal region. Depression is likely due to the decreased numbers of serotonin 5-hydroxyindolacetic acid (5-HT) neurons in the dorsal raphe nucleus and reduced dopamine neurons in the ventral tegmental area19,20. Cognitive function may be related to the depletion of dopamine in the head of the caudate nucleus, which participates in the basal ganglia-thalamocortical circuits involving different regions of the prefrontal cortex. Lewy body formation is abundant in these regions21,22. Urinary control may be from frontal cortex degeneration or autonomic nervous system dysfunction, and possibly in combination with prostate enlargement. Orthostatic hypotension is likely due to sympathetic denervation of the central control centers located at the dorsal vagal nucleus, nucleus ambiguus, and other medullary centers (caudal raphe nuclei, rostral ventrolateral medulla, and ventromedial medulla). These nuclei mainly control the sympathetic pre-ganglionic neurons via descending pathways23,24. Lewy bodies have been found in the myenteric plexus in PD patients. This explains the reason for constipation because of the loss of dopaminergic cells throughout the gastrointestinal tract25.

PD is characterized by a dopaminergic degenerative process affecting neurons in the substantia nigra. This results in the disruption in the basal ganglia circuitry. How the degenerative processes damage both the nigrostriatal system and other brain regions is not completely clear. Braak et al.26 hypothesized that the degenerative process starts from the base of the brain. The olfactory bulbs may be the first to be involved, followed by the lower brain stem that affects autonomic functions as well as sleep. Subsequently, substantia nigra

Table: The non-motor symptom complex of Parkinson’s disease

<table>
<thead>
<tr>
<th>Neuropsychiatric symptoms</th>
<th>Sleep disorders</th>
<th>Autonomic symptoms</th>
<th>Sensory and other symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Depression, apathy, anxiety</td>
<td>(A) REM sleep behavior disorder and REM loss of atonia</td>
<td>(A) Cardiovascular system: orthostatic hypotension; falls related to orthostatic hypotension; bradycardia or arrhythmia</td>
<td>(A) Pain</td>
</tr>
<tr>
<td>(B) Compulsive-obsessive behavior (possibly drug induced); repetitive behavior</td>
<td>(B) Non-REM-sleep related movement disorders</td>
<td>(B) Gastrointestinal system: sialorrhea; dysphagia and choking; reflux, vomiting, nausea; fecal constipation; fecal incontinence</td>
<td>(B) Paraesthesia</td>
</tr>
<tr>
<td>(C) Attention deficit</td>
<td>(C) Insomnia</td>
<td>(C) Urinary system: bladder disturbances; urgency and frequency; nocturia; incontinence</td>
<td>(C) Olfactory disturbance</td>
</tr>
<tr>
<td>(D) Hallucinations, illusion, delusions</td>
<td>(D) Excessive daytime somnolence</td>
<td>(D) Reproductive system: sexual dysfunction; erectile impotence; hypersexuality (possibly drug induced)</td>
<td>(D) Fatigue</td>
</tr>
<tr>
<td>(E) Delirium</td>
<td>(E) Restless legs and periodic limb movements</td>
<td>(E) Thermoregulation: sweating; dry eyes (xerostomia); heat or cold intolerance</td>
<td>(E) Weight changes</td>
</tr>
<tr>
<td>(F) Anxiety and panic attacks</td>
<td>(F) Nightmares or vivid dreams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G) Dementia</td>
<td>(G) Sleep disordered breathing (sleep apnea)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified from Chaudhuri et al.3. REM = rapid eye movement.
and other nuclei in the midbrain are affected, thus manifesting the typical motor symptoms of PD. Eventually, the limbic system and frontal neocortex are involved, resulting in cognitive and psychiatric symptoms in the advanced PD stages. Although yet to be confirmed, Braak et al.’s hypothesis nicely illustrates the evolving symptoms in PD, including both motor and non-motor manifestations.

Depression

Depression is a very common feature in patients with PD. The reported prevalence from various studies is between 16% and 70%5–7. Such variations are due to the different diagnostic criteria used in different studies. Major depressive disorder defined by DSM-IV may not be very common in PD patients, but depressive symptoms certainly have a high prevalence rate in PD. It is thought that complex interactions between norepinephrine, serotonin and dopamine systems are interrupted in brains of PD patients. The mechanisms are not clear yet. Some studies revealed decreased concentrations of 5-HT, a serotonin metabolite, in the cerebrospinal fluid and reduced cortical 5-HT1A receptor binding in PD. Another study suggested the role of an allelic variation in the serotonin transporter gene. The diagnosis of depression in PD can be challenging, since flat affect, psychomotor slowing, fatigue, and decreased libido may be frequently mistaken for PD motor symptoms. The characteristics of depression in PD are decreased energy and motivation, losing interest, feelings of sadness, helplessness and hopelessness, changes in weight, sleep and appetite, irritability, and thoughts of suicide. Approximately 7–32% of PD patients are diagnosed with major depression, according to DSM-IV diagnostic criteria. However, the depression is reported to be qualitatively different in that many depressed PD patients have greater rates of anxiety, pessimism, irrationality, and less guilt and self-reproach, compared with those of non-PD patients with major depression. There can be fluctuations between a normal affect and a depressive state in their emotions. The episodes of depression may be more frequent during the “off” medication stage and may improve when the motor symptoms are better treated. Interestingly, depression has been found to be more prevalent in patients with the akinetic-rigid type of PD, compared with those with the tremor-predominant type, and in patients with right-sided motor symptoms. Furthermore, greater depression is probably associated with greater motor symptom severity in PD.

Reactive depression is another form of depression experienced by newly diagnosed PD patients and others with more advanced disease who are losing independence and control because of changes in motor functioning and feelings of helplessness. Other social factors, including job loss with subsequent changes in income or loss of identity, may also contribute to depression. Concurrent memory difficulty, communication problems, and sleep interruptions, all add to the severity of depression and anxiety. They contribute substantially to increased morbidity and caregiver burdens.

Treating PD patients with depression has not been different from treating patients with other forms of depressive disorders. Selective serotonin reuptake inhibitors (SSRIs) are most frequently used. This is generally safe, although a small number of patients were reported to develop serotonin syndrome from combined use of SSRI and selegiline, a monoamine oxidase B inhibitor. The effectiveness of SSRI in the treatment of PD depression is still not determined. There have not been large-scale, of double-blind, placebo-controlled studies conducted. A meta-analysis found disappointing benefits of SSRI treatment in older PD patients with depression. Other treatments of choice include tricyclic antidepressants. While this class of medications has the additional benefit in reducing tremor by their anticholinergic action, the side effects, including confusion, orthostatic hypotension, dry mouth or constipation, often limit their use. Rarely, electroconvulsive therapy is used in patients with medication-refractory depression. It may improve motor function in PD patients.

Anxiety

There can be periodic anxiety and panic attacks. Anxiety disorders are more prevalent in PD patients than age-matched controls, although it is often underdiagnosed. The prevalence rate is at least 40%. Panic attacks easily occur in patients who develop erratic motor fluctuations during “off” periods. It usually improves after the patient achieves the “on” state. “On” state dyskinesia may also induce anxiety. Thus, anxiety attacks seem more related with the motor fluctuations in PD patients. Benzodiazepine, buspirone, and SSRI may help reduce such anxiety. However, better control
of PD motor symptoms may be more helpful in reducing anxiety and fearfulness.

Cognitive Decline and Dementia

Dementia in PD may not be evident until the later stages. Although the cognitive decline reported in PD is subtle and does not often interfere with daily functioning, PD patients have been shown to demonstrate cognitive slowing and executive dysfunctioning problems at earlier stages. Longitudinal research has described PD-related cognitive deficits in language, visuospatial functioning, long-term memory, and executive functioning that are greater than those expected from normal aging. The percentage of patients with cognitive deficits is estimated to be approximately 20%. However, the prevalence varies widely according to different studies. For example, a Norwegian study of PD patients indicated that the 8-year prevalence in developing dementia was 78.2%.

The cognitive dysfunction in PD may be a consequence of disruption not only in the primary motor circuit but also in a number of interconnected pathways from the basal ganglia to the cortex. Dopamine depletion in the lateral orbitofrontal and dorsolateral prefrontal circuits has been suggested as a possible mechanism of cognitive impairment in PD. Cholinergic cell loss in the nucleus basalis of Meynert is prominent in PD. The disturbances of dopamine–acetylcholine dependent alterations in synaptic plasticity may also be responsible for dementia in PD.

PD patients at a higher risk of developing dementia include: (1) age older than 70 years; (2) Unified Parkinson’s Disease Rating Scale motor score of more than 25 (moderate to advanced impairment); (3) coexisting depression; (4) development of mania, agitation, disorientation or psychosis when treated with levodopa; (5) facial masking at presentation; (6) exposure to psychologic stress; (7) presence of cardiovascular abnormalities; (8) low socioeconomic status and educational level; and (9) predominant bradykinesia, and postural and gait disturbance. Tremor or other parkinsonian signs are less associated with dementia.

Cognitive impairment in PD is usually distinguished from that of Alzheimer’s type, which reveals more amnestic quality of memory loss. In contrast, PD patients encompass the clinical symptoms of cognitive slowing, impaired memory recall and retrieval, and executive deficits. These symptoms are summarized as “dysexecutive syndrome”, in which acquisition and delayed recall are defective, while recognition memory remains intact. However, the distinctions usually may not be very clear. About 15–30% of demented patients with PD may also have coexisting Alzheimer’s disease and exhibit symptoms of impaired language, memory, and visuospatial functioning earlier in the course of the disease, including the presence of aphasia, agnosia, and apraxia.

Another important differential diagnosis is dementia with Lewy bodies (DLBs), which also manifests dementia, autonomic failure, and parkinsonian symptoms. As a general rule, DLB patients show fluctuations in mental symptoms, visual hallucinations, and more prominent lower body parkinsonism. The motor symptoms of parkinsonism usually occur together with cognitive decline. Again, the clinical features are frequently not reliable in making a clear differentiation. A confirmed diagnosis usually depends on the results of autopsy. A typical pathologic picture of DLBs shows widespread Lewy bodies located in the neocortex and basal ganglia.

Rivastigmine, an acetylcholinesterase inhibitor that has been used in the symptomatic treatment of patients with mild to moderate Alzheimer’s disease, was also shown to be effective in the treatment of dementia in PD. Other cholinesterase inhibitors may also be beneficial, although large-scale randomized controlled studies have yet to be conducted. Memantine, which is an N-methyl-D-aspartate receptor antagonist beneficial in Alzheimer’s dementia, has not been shown to be effective in PD dementia. One study even suggested that it worsened both the motor and cognitive functions in PD.

Psychosis and Hallucination

Hallucination occurs in PD, more frequently in the advanced stages. Psychosis and visual hallucination are common, dose-dependent adverse effects of anti-PD medications, in combination with disease progression and medical illnesses. Risk factors include advancing age, presence of dementia, and polypharmacy. Patients who experience hallucination generally have a certain degree of cognitive decline. They also have a worse prognosis, with higher mortality rates. In addition, delusions, paranoid ideation, and delirium may also become more frequent as the disease progresses.
Hallucination is usually visual in nature, in contrast to auditory hallucination in schizophrenia. Patients may report seeing small animals, insects, children, or their deceased relatives or friends. In the early stages, patients retain insight that the hallucinations are not real. Symptoms are commonly more severe toward the evening, known as “sun-downing.” Patients may experience frightening dreams or night terrors that can lead to acting or lashing out during the dream state. Another common delusion is that of spousal infidelity, for either male or female patients. These symptoms can be aggravated by dopaminergic and other psychoactive medications. Any medical illness, even as mild as an upper respiratory tract infection or diarrhea, may trigger or worsen the demented or psychotic symptoms. They are best managed by either simplifying the patient’s psychoactive medications or reducing the dopaminergic drugs.

Typical neuroleptics significantly increase extrapyramidal symptoms in PD and should not be used. Atypical neuroleptics, such as quetiapine or clozapine, may be used in the evening to relieve such symptoms. However, not all atypical neuroleptics are safe or free from extrapyramidal side effects. Olanzapine and risperidone were both shown to worsen the motor symptoms in PD and should not be used.

Sleep Disturbance

Sleep disturbances are common problems in PD patients. Because of depression and/or hallucination, patients may become restless at night and have difficulty falling asleep. Those at higher risk for pathologic sleep are male patients with advanced disease, cognitive impairment, drug-induced psychosis, and orthostatic hypotension. After falling asleep, patients may still wake up frequently because of stiffness of their bodies or urinary urgency at night. As a result, they have difficulty achieving restful sleep.

Rapid eye movement (REM) behavior sleep disorder (RBD) is very likely to occur. It is characterized by loss of atonia during REM sleep, resulting in excess motor activity during dreaming. It is highly related to neurodegenerative disorders, including PD. Recent studies suggested RBD may occur well before the emergence of PD symptoms. Approximately half of the patients with RBD will eventually develop PD, and so RBD may be an indicator of presymptomatic PD.

Interestingly, the movements during REM sleep show little signs of parkinsonism. This could be attributed to the motor signals from the cortex during REM sleep bypassing the extrapyramidal system. Management of this disorder requires adjusting dopaminergic medications to smaller dosages, especially toward the night. Long-acting dopamine agonists may also be considered. Clonazepam has been widely used in this condition, but side effects such as excessive sedation have to be monitored.

Excessive daytime sleepiness (EDS) is common. In addition to fatigue that many PD patients experience, the lack of sleep during the night also sets up a vicious cycle for poor sleep hygiene. This sleepiness can be disabling, often approaching levels observed in disorders of sudden-onset sleep, namely narcolepsy/cataplexy. Polysomnographic studies have shown transition from wakefulness to stage II sleep within seconds. In addition, dopaminergic drugs, especially dopamine agonists, can further cause sedation and sudden onset of sleep. Management is usually by adjusting the timing of medications, or breaking the vicious cycle by improving patients’ night-time sleep. Modafinil may help relieve EDS. However, while this medicine does not deteriorate PD symptoms, several randomized controlled trials revealed that it either had no significant benefit or produced only modest improvement.

A significant portion of patients may suffer restless leg syndrome (RLS) that results in sleep disturbance. It is characterized by an uncomfortable feeling of the lower extremities that urges the patients to move. It occurs mostly when patients are at rest or during the night. Moving or walking will help patients feel better subjectively. It often occurs in combination with the symptoms of periodic limb movement during sleep, a repetitive, myoclonic jerky limb movement present mainly when patients are asleep. Both conditions severely affect the sleep quality of patients. Prevalence of RLS in PD patients was reported to be higher than that in other non-PD patients. The pathophysiology is still unclear, although various central dopaminergic systems are believed to be involved in both PD and RLS. Dopamine agonists, such as ropinirole and pramipexole, are effective in controlling RLS. Levodopa is also effective in controlling the symptoms, although augmentation is a concern. This limits the usefulness of levodopa as a first-line choice for treatment of RLS. Other medications, including gabapentin, clonazepam and opiates, have been shown to relieve RLS symptoms.
One study even reported that deep brain stimulation of the subthalamic nucleus also improved RLS99.

Autonomic Dysfunctions

Autonomic dysfunctions in PD patients are manifested in several different systemic symptoms. These generally include cardiovascular (orthostatic hypotension, cardiac arrhythmia), gastrointestinal (gastric dysmotility, indigestion, constipation, and regurgitation), urinary (frequency, urgency or incontinence), sexual (impotence or hypersexual drive), and thermoregulatory (excessive sweating or intolerance of heat or cold) dysfunctions1,25. The pathophysiology of dysautonomia in PD is thought to be from degeneration and dysfunction of the nuclei that mediate autonomic functions, such as the dorsal vagal nucleus, nucleus ambiguus, and other medullary centers (rostral ventrolateral medulla, ventromedial medulla, caudal raphe nuclei), which exert differential control on the sympathetic preganglionic neurons via descending pathways100.

Cardiovascular System

Orthostatic hypotension is a particular concern. The symptoms include position-related dizziness, fatigue or even fainting. Position-related dizziness often leads to falls in PD patients. It may be a subtle sign in the early stage of PD and may not manifest as a major problem until later stages101. Dopaminergic medications usually do not significantly help. They may even worsen the symptoms, especially with dopamine agonists102,103. Treatment of orthostatic hypotension is mostly symptomatic. For those patients who also take regular antihypertensive medications, the balance between these and Parkinson medications should be sought. Patients are encouraged to drink appropriate amounts of water and consume more salt. They should be taught to get up slowly from a sitting position and wait for a while before initiating their gait to prevent the sudden decrease of blood pressure on positional changes. Compression stockings may also improve the condition. In more severe cases, antihypotensive medications may be necessary to improve orthostatic hypotension symptoms. The commonly used drugs are fludrocortisone (a salt-retaining mineralocorticoid) or midodrine (a selective, peripherally acting alpha-adrenergic agonist). In an epidemiologic study, 9.1% of PD patients required such medications to treat orthostatic hypotension104.

Gastrointestinal System

Gastrointestinal symptoms are a common problem in PD. Dysphagia, heartburn, medication-related nausea, and constipation are the predominant symptoms105. Constipation is the most frequently encountered problem. It can be one of the early signs even before the appearance of the motor symptoms of PD13,106. Slower bowel movement and decreased mobility exacerbate the severity of constipation. This can especially be a serious problem for older patients, as they do not exercise enough and may not take adequate amounts of fluid. At least 59% of PD patients suffer from constipation as compared with 21% in age-matched non-PD patients107. Byrne et al.108 reported that constipation in PD is commonly a consequence of anorectal sphincter and pelvic floor dysfunctions108. Fewer than three bowel passages in a week will raise the clinicians’ concern for constipation. Patients are advised to take plenty of high-fiber food (dietary bulk) and fluid. Reducing anticholinergic medications will also help. Regular exercise can improve bowel motility. Stool softeners, laxatives, and enemas may also be used to relieve persistent symptoms109,110.

Dysphagia may become more problematic as PD progresses and can lead to choking and aspiration pneumonia. Softening of foods may help, whereas others may need to thicken their liquids. Evaluation by a speech pathologist or otolaryngologist can be helpful. Patients are instructed not to rush, and to eat and chew thoroughly before swallowing111. However, for some patients with advanced disease, a feeding gastrostomy may be necessary to improve nutrition and quality of life and avoid aspiration112.

Nausea troubles many PD patients, especially when they suffer the side effects of levodopa, dopamine agonists or other parkinsonian medications. This can be explained by the stimulation of dopaminergic receptors in the brain stem nausea center and the peripheral tissues, including receptors on the gastrointestinal tract, resulting in irregular peristalsis. To correct this condition, sometimes simply changing the medication schedule may help. Other options include extra carbidopa to block the conversion of levodopa to dopamine in the peripheral tissues more effectively. Certain antiemetic (or appetite-increasing) medications, like chlorpromazine, cisapride or metoclopramide, block dopaminergic receptors both peripherally and centrally and should be avoided as they will cause worsening of PD symptoms113.
Urinary and Sexual Systems

Urinary urgency or incontinence due to a spastic bladder occurs in approximately 27–39% of PD patients. A questionnaire-based study regarding autonomic functions of PD patients versus a control group of elderly non-PD subjects found the PD patients with twofold greater occurrence of bladder problems and fourfold risk of other autonomic problems, when compared with the controls. The patients complained of urinary frequency and urgency, but with little urinary output each time. Prostate enlargement is common among older patients. It usually becomes an obstacle for emptying urine completely. Nocturnal urinary urgency is also common. Many patients have the urge to urinate frequently at night as their sleep becomes fragmented. Urinary incontinence will occur if patients walk slowly and cannot reach the bathroom in time. It seems that the severity of bladder dysfunction is correlated with the progression of PD. Appropriate dosage of anticholinergics or alpha-blockers helps relieve the frequency problems. The use of dopaminergic medications to improve bladder function has been reported but is generally not reliable.

Sexual dysfunctions, including erectile difficulty, loss of libido, and anorgasmia, are common in male PD patients. Erectile dysfunction was nearly twice as frequent in PD patients, compared with controls from a questionnaire-based study. Patients rarely give information despite its significance on quality of life. Sildenafil has been reported to be effective for erectile dysfunction in patients without obvious cardiovascular risk factors. Other patients may suffer a completely opposite problem, which is sexual impulse control. Patients, particularly those taking dopaminergic medications, may become obsessive and compulsive in gambling, shopping, spending or even sex. Pergolide mesylate, when added to L-DOPA, was reported to significantly improve all sexual functions in younger male PD patients who were still interested in sexual activities. However, some argued that dopamine agonists may induce impulse control disorders in PD, resulting in hypersexuality in these patients. Dopamine agonists did not actually improve erectile dysfunction in these patients. The effects of impulse control difficulties on PD patients will need further investigation.

Thermoregulation

PD patients may experience cold or heat intolerance. A more common problem is excessive sweating (hyperhidrosis). A study found that complaints of sweating disturbances were not correlated with disease severity but did correlate with other symptoms of autonomic dysfunction. Sweating problems occurred predominantly in “off” periods and in “on” periods with dyskinesias. It was almost three times more common than in controls who did not have PD. Excessive sweating occurred mainly on the face, head, and trunk. It may be explained by decreased activation of sweat glands in the palms of the hands, suggesting that axial hyperhidrosis can be a compensatory phenomenon for reduced sympathetic function in the extremities. This phenomenon results in reduced quality of life of the patients, in the areas of daily activities as well as social interactions. Botulinum toxin injections may relieve local areas of hyperhidrosis, though it has no effect on the body function or thermoregulation.

Conclusion

Non-motor symptoms in PD are usually more complicated and difficult to manage than typical PD motor symptoms. However, they are usually overlooked and not properly treated. Physicians should be aware of the need to evaluate the neuropsychiatric, cognitive, autonomic, and sleep complications of PD. Early recognition of non-motor symptoms is essential, as effective treatment can reduce morbidity and improve the quality of life of PD patients.

Acknowledgments

We thank Ellen Matthiesen for her editorial assistance.

References

induced by pergolide: evidence from the results of an open, prospective, one-year trial. Parkinsonism Relat Disord 2005; 11: 509–12.

