Original Article

Verification of Survival Predictors in Elderly Patients with Myelodysplastic Syndrome from Outpatient Clinical Practice

Eva Kadlčková a* , Peter Rohoň b , Tomáš Fürst c , Libor Červínek d , Anna Jonášová e , Tomáš Šálek f , Jiří Tesař g , Yvetta Stavařová h

a Hematology and Blood Transfusion Department, Tomáš Baťa Hospital in Zlín, Czech Republic, b Department of Hemato-Oncology, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic, c Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University Olomouc, Czech Republic, d Department of Internal Medicine-Hematology and Oncology, Faculty Hospital Brno, Masaryk University, Brno, Czech Republic, * 1st Department of Medicine, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic, e Department of Clinical Biochemistry, Tomáš Baťa Hospital in Zlín, Czech Republic, f Radiological Department, Tomáš Baťa Hospital in Zlín, Czech Republic

Contents lists available at ScienceDirect
International Journal of Gerontology
journal homepage: www.ijge-online.com

1. Introduction

Myelodysplastic syndrome is a heterogeneous group of hematopoietic disorders characterized by dysplastic changes in blood cell precursors in bone marrow, (pan) cytopenia in peripheral blood, and by various levels of risk for progression into acute leukemia 1 . MDS develops either de novo or secondarily due to previous chemo- or radiotherapy. Diagnosis is based mainly on microscopically detected significant dysplastic changes, an increased percentage of myeloblasts in a bone marrow smear, and identification of cytogenetic aberrations typical for MDS in patients with persistent or progressive cytopenia 2 . Patient survival varies from several months to many years, depending on the MDS subtype, cytogenetic aberrations and depth of cytopenias 3 . Annual incidence in general population of developed countries is approximately five per 100,000, ranging from approximately 0.1 in patients aged under 40 years to more than 30 in those over 70 years of age and to approximately 50 per 100,000 in the 80+ age category. Thus, MDS represents a serious issue in geriatric hematology 4 .

The key to selecting the proper treatment modality is the classification of the patient into a risk group according to IPSS, IPSS-R or WPSS 5 – 7 . Survival is determined by both higher ferritin levels and the numbers of RBC units; however, the risk does not continue to increase after more than 20 RBC units are administered.

Keywords: chelation therapy, myelodysplastic syndrome, prognostic scoring system, transfusion

Summary

Background: Myelodysplastic syndrome (MDS) is a clonal disorder affecting older persons. We aimed to analyze the effectiveness of the scoring systems and of the number of received red blood cell (RBC) units in predicting survival.

Methods: The study included an unselected group of 73 patients with MDS who were diagnosed and treated in a single hospital over a period of 12 years. International Prognostic Scoring System (IPSS), revised IPSS (IPSS-R), WHO-Prognostic Scoring System (WPSS), Charlson Age-Comorbidity Index (CACI), and impact of performance status (PS) on overall survival (OS) and event free survival (EFS) were tested. The follow-up of received RBC units was conducted.

Results: The median age at diagnosis was 69.5 years, the median CACI was 3.0. The median survival times of the group were 7.04 and 2.78 years for OS and EFS, respectively. The concordance values of the IPSS, IPSS-R and WPSS are 0.812, 0.892 and 0.889 for OS; 0.785, 0.847 and 0.827 for EFS. The comorbidity index and PS were the only auxiliary criteria when determining the risk and selecting the therapeutic approach in MDS patients. In transfusion-dependent unchelated patients, both OS and EFS were negatively influenced by both higher ferritin levels and the numbers of RBC units; however, the risk does not continue to increase after more than 20 RBC units are administered.

Conclusions: IPSS-R is best suited as a predictor of survival. CACI and PS present auxiliary criteria for determining the risk. Number of received RBC units was detected as a significant predictor of survival.

Copyright © 2017, Taiwan Society of Geriatric Emergency & Critical Care Medicine. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
WPSS5–7. Patient’s age and comorbidities play an important role in selecting adequate therapy.

For many years, MDS management was mainly based on two modalities: supportive care including transfusions, and allogeneic stem cell transplantation. Novel drugs routinely used in clinical practice include hypomethylating agents, immunomodulators, or new chelating agents that may affect the natural course of the disease and prolong the survival of MDS patients8.

The objectives of the study were to provide a picture of the diagnosis and treatment of an unselected group of MDS patients cared for in the Zlín hospital in the setting of daily hematology practice over a long-term period (2002–2015) and to compare the results with the literature data. Frequently, data in literature is influenced by selection of certain patient groups (e.g. allogeneic transplantation, administration of hypomethylating agents), stemming from the fact that highly specialized hematology centers typically care for patients requiring curative or intensified therapy while those suitable for palliative therapy continue to be cared for in local hematology centers. Therefore, we aimed to determine which of the three prognostic indices is best for predicting OS and EFS. As MDS is mainly an old age disease usually accompanied by multiple comorbidities, we wanted to determine whether or not CACI9 is a stronger predictor of OS and EFS than the prognostic indices.

Transfusion of blood products remains the basis of MDS treatment even at the present time. Therefore, special attention is paid to the follow-up of the number of RBC units and serum ferritin levels in the subgroup with RBC transfusion-dependent patients.

2. Material and methods

Between January 1, 2002 and June 30, 2015, a total of 73 patients with MDS and chronic myelomonocytic leukemia (CMML) were diagnosed and treated in the outpatient center of the Hematology and Blood Transfusion Department of Tomáš Baťa Hospital in Zlín, often in collaboration with centers in Brno, Olomouc and Prague. The reason for including patients with CMML is a historical one stemming from the fact that highly specialized hematology centers typically care for patients requiring curative or intensified therapy while those suitable for palliative therapy continue to be cared for in local hematology centers. Therefore, we aimed to determine which of the three prognostic indices is best for predicting OS and EFS. As MDS is mainly an old age disease usually accompanied by multiple comorbidities, we wanted to determine whether or not CACI9 is a stronger predictor of OS and EFS than the prognostic indices.

Transfusion of blood products remains the basis of MDS treatment even at the present time. Therefore, special attention is paid to the follow-up of the number of RBC units and serum ferritin levels in the subgroup with RBC transfusion-dependent patients.

2.1. Statistical methods

Overall survival is defined as the time from diagnosis to death from any cause (event) or the last visit (censoring). Event-free survival is defined as the time from diagnosis to disease progression (a higher degree of cytopenia, higher number of blasts in the bone marrow, progression in the FAB classification) or death from any cause (event) or the last visit (censoring)10. The impact of individual prognostic factors on OS and EFS was assessed by the Cox proportional hazard model. Concordance was used to determine the predictive power of the prognostic indices IPSS, WPSS and IPSS-R. Concordance measures the probability of agreement between survival times in a randomly selected pair of patients and their scores. Agreement means that a patient with a shorter survival time also has a less favorable score. Concordance always ranges from 0.5 (if the score has no predictive value for survival) to 1.0 (if all patient pair scores agree with their survival times). The relationship between two categorical predictors (e.g. the presence of secondary MDS and a prognostic index) was analyzed using contingency tables and a test of independence. The analyses were mostly performed with the Statistica software package; the Cox regression model was implemented in the R software. Effects with p-values below 0.05 were considered statistically significant.

3. Results and discussion

3.1. Sample characteristics

Of the 73 patients, 50 cases (68.5%) had low-risk MDS, comprising refractory anemia (RA), refractory cytopenia with unilineage dysplasia (RCUD), refractory anemia with ring sideroblasts (RARS), refractory cytopenia with multilineage dysplasia (RCMD), unidentified MDS (MDS-U), and MDS with isolated deletion 5q. Another 17 patients (23.3%) were in the high-risk MDS group, that is, subtypes of refractory anemia with excess blasts I and II (RAEB I
and II). The remaining six patients (8.2%) were diagnosed with CMML. In the entire sample, there was a slight preponderance of females (39 patients, 53%). The median age at diagnosis was 69.5 years (range, 38–87 years). Thirteen patients (18%) had secondary MDS or CMML. Cyrogenetic aberrations were noted in 28 (42%) out of 66 evaluable patients. Bone marrow fibrosis was present in five of 54 patients who had a valid trephine biopsy sample at the time of diagnosis. Stratification of patients according to the IPSS, IPSS-R and WPSS is shown in Fig. 1. Further, 37 out of all 73 patients were dependent on RBC transfusions, seven of them received chelation therapy (Table 1). All treatment modalities and their combinations are summarized in Table 1. Several patients received chelation therapy (Table 1).

3.2. Predictors of survival

The median survival times of all 73 patients were 7.04 and 2.78 years for OS and EFS, respectively. We first investigated the predictive power of the IPSS, WPSS and IPSS-R in the unsellected cohort of patients. Both concordance of the three indices (see 2.1) and their ability to find statistically significant differences between prognostic groups were assessed. The Cox proportional hazard model was used to create a model in which the only predictor of survival (OS or EFS) was the patient’s category according to the IPSS, WPSS or IPSS-R. Patients with IPSS (IPSS-R, WPSS) equal to 0 are always considered as the reference group. For OS, the concordance rates of the IPSS, IPSS-R and WPSS were 0.812, 0.892 and 0.889, suggesting that the WPSS is as good a predictor of OS as the IPSS-R. However, there were no statistically significant differences between the first three WPSS categories (i.e. very low, low and intermediate risk). Thus, the best predictor of OS in our patients continued to be, as expected, the IPSS-R, with statistically significant differences between all categories and a reasonable stratification of risk among the categories. It must be stressed that the IPSS has one category less than the IPSS-R, meaning that even if both indices were equally suitable, the IPSS concordance value should be higher. Therefore, the lower concordance value of the IPSS shows that the IPSS-R is a considerably better predictor of OS in this cohort. Similarly, the IPSS-R is the best prognostic index for EFS.

In the present study, valid cytogenetic data for several patients are missing. Those patients could not be classified into prognostic categories according to the IPSS, IPSS-R or WPSS. That is why we decided to verify whether the MDS subtype alone is an effective predictor of OS and EFS. For the purposes of analytical statistics, the 2008 WHO MDS subtypes were first divided into three diagnostic categories as follows: low-risk MDS comprising RA, RCMD, RCUD and MDS with isolated deletion 5q; high-risk MDS including RAEB I and II; and CMML, including CMML I and II. Once again, the category was the only predictor in the Cox proportional hazard model. In case of OS, HR = 7.4 for high-risk MDS vs. low-risk MDS, while HR = 11.9 for CMML vs. low-risk MDS. As for EFS, HR = 8.2 for high-risk MDS vs. low-risk MDS, while HR = 13.2 for CMML vs. low-risk MDS. In all four cases, the differences were statistically significant. Thus, the WHO subtype is a relatively good predictor of patient survival if valid cytogenetic data are not available.

In the present study, the median and mean ages of MDS patients at diagnosis were 69.5 and 67.5 years, respectively, which is consistent with literature data. People aged older than 65 years normally have three or more comorbid conditions; the same is true for MDS patients. Comorbidities generally adversely affect survival of patients with malignancies, and considerably influence therapeutic goals. Yet comorbidity scores are not included in the IPSS, IPSS-R or WPSS. In the present study, the median and mean CACI scores were 3.0 and 3.74, respectively. Statistical analysis showed that the CACI score was a significant predictor of both OS (a hazard ratio of 1.22 in patients having a difference of 1 between their CACI scores, p = 0.02) and EFS (HR = 1.20, p = 0.02). Classification of the CACI scores into five categories to match with the IPSS-R showed that this predictor has less power than the IPSS-R for both OS and EFS. Similarly, the statistical analysis failed to show that the PS score is better at predicting OS and EFS than any of the three prognostic indices.

Despite all the advances in pharmacological therapy of MDS, such as the use of lenalidomide or hypomethylating agents, supportive care including transfusion of blood products remains the cornerstone of treatment. Repeated RBC transfusions, however, are associated with iron overload. The amount of iron in the body may be determined by both direct and indirect methods. The

Table 1

Transfusion-dependent patients receiving chelation therapy.

<table>
<thead>
<tr>
<th>Patient</th>
<th>IPSS-R</th>
<th>RBC units</th>
<th>Chelating agents</th>
<th>Other treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very low</td>
<td>110</td>
<td>DES; FER; EXJ</td>
<td>VIT; ESP + G-CSF</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>188</td>
<td>EXJ</td>
<td>5-AZA</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>107</td>
<td>EXJ</td>
<td>VIT; ESP; 5-AZA</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>244</td>
<td>FER; EXJ</td>
<td>VIT; FER; PRED; LEN cons.</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>56</td>
<td>DES</td>
<td>VIT; PRED; cyclosporine A</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>86</td>
<td>EXJ</td>
<td>VIT</td>
</tr>
<tr>
<td>7</td>
<td>Very low</td>
<td>226</td>
<td>FER; DES; EXJ</td>
<td>VIT; LEN cons.; 5-AZA cons.</td>
</tr>
</tbody>
</table>

Cons.: considered; DES: deferoxamine; ESP: erythropoiesis-stimulating protein; EXJ: deferiprone; FER: deferiprone; G-CSF: granulocyte colony-stimulating factor; IPSS-R: Revised International Prognostic Scoring System; LEN: lenalidomide; NA: not available; PRED: prednisone; RBC: red blood cell; VIT: vitamins; 5-AZA: 5-azacytidine.

Fig. 1

Iron chelation therapy has been included in all recommendations for treatment of MDS patients in the developed world. There is no consistent answer to the question of when chelation should be initiated. For example, the US National Comprehensive Cancer Network recommends to start chelation when ferritin concentration exceeds 2500 μg/L\(^2\). According to the Czech guidelines, consistent with European recommendations, chelation therapy should be initiated in MDS patients with serum ferritin levels over 1000 μg/L (after administration of approximately 20–25 RBC units), expected to have long-term transfusion dependence and having stable disease without survival-limiting comorbidities\(^1\). In the light of these facts, the findings concerning the relationship between OS and number of RBC units administered to unchelated patients identified in the present study are of interest. For that purpose, RBC units were classified into four groups as follows: 0, 1–10, 11–20, >20. Compared with baseline (0), the 1–10 group has a significantly higher risk of death (HR = 8.4, \(p < 0.01\)); this is even higher in the case of the 11–20 group (HR = 22, \(p < 0.001\)). Interestingly, the risk does not continue to increase after administering more than 20 RBC units. For EFS, the results were very similar (HR = 9.1, \(p = 0.001\) for the 1–10 group; HR = 20, \(p < 0.001\) for the 11–20 group).

4. Conclusion

The study showed that even for the unselected sample of MDS and CMML patients, any of the three prognostic indices may serve as a sufficiently effective predictor of survival, with the IPSS-R being the best predictor of both OS and EFS. In cases when valid cytogenetic findings are unavailable and patients therefore cannot be classified into prognostic groups, MDS subtypes according to the 2008 WHO classification remain a relatively good predictor of survival. The comorbidity index and PS were found to be only auxiliary criteria when determining the risk and selecting the therapeutic approach in MDS patients. In transfusion-dependent unchelated patients, both OS and EFS were negatively influenced by both higher ferritin levels and the numbers of RBC units; however, the risk does not continue to increase after more than 20 RBC units are administered.

Conflicts of interest

We have no financial or nonfinancial interests related to the material in the manuscript.

Acknowledgements

Supported by grants IGA-LF-2016-001, IGA-LF-2017-007 and MH CR – RVO (FNOL, 00098892).

Abbreviations

5-AZA 5-azacytidine
ESP erythropoiesis-stimulating protein

Table 2

<table>
<thead>
<tr>
<th>Patient</th>
<th>OS</th>
<th>CIO</th>
<th>Ferritin</th>
<th>HH</th>
<th>IPSS-R</th>
<th>RBC units</th>
<th>Chelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>1342</td>
<td>No</td>
<td>Very low</td>
<td>110</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>450</td>
<td>No</td>
<td>Low</td>
<td>45</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>No</td>
<td>1116</td>
<td>No</td>
<td>High</td>
<td>188</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>502</td>
<td>Yes</td>
<td>Very low</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations:

CIO: cardiac iron overload; FERRITIN: ferritin level [μg/L]; HH: hepatic iron overload; IPSS-R: Revised International Prognostic Scoring System; RBC: red blood cell.
References