Percutaneous coronary intervention (PCI) is effective to establish reperfusion of occluded coronary arteries in patients with myocardial infarction. Although restoration of coronary blood flow by PCI is mandatory, ischemic cardiomyocyte death followed by reperfusion eventually results in a detrimental cardiac ischemia-reperfusion (IR) injury. Excess of intracellular calcium and reactive oxygen species (ROS) lead to uncoordinated contraction of myofibril, swollen mitochondria, and destruction of cytoskeleton and sarcolemma.

The injured myocardium is characterized by an enhanced expression of inflammatory cytokines, cardiomyocyte apoptosis, and infiltrating leukocytes. These mentioned histological changes reflect myocardial necrosis that mostly becomes more manifest during reperfusion than that during ischemia. Taken together, cardiac IR injury contributes to expansion of infarct size, post-MI cardiac fibrosis, heart failure, and poor prognosis.

In this present issue of International Journal of Gerontology, Xue et al. reported that exenatide has protective effects on the cardiomyocytes during hypoxia-reoxygenation injury. Additionally, they also demonstrated that the GLP-1R/Pi3K/AKT signaling pathway may be involved in the beneficial process of exenatide. Despite the work in this article has revealed an experimental method to investigate the effect of GLP-1R agonist on cardiomyocytes, the endless story of cardiac IR injury is still going because of the complexity of molecular mechanism. Further research should be encouraged to investigate the effect of other GLP-1R agonists, in which allow us to elucidate whether a class effect of drugs exists. Additionally, detail experiments in vitro using primary culture from animal cardiomyocytes and in vivo IR models are also necessary to figure out the underlying mechanisms.

References

Chao-Feng Lin, MD, PhD
Department of Medicine, MacKay Medical College,
New Taipei City, Taiwan

Department of Cardiology, MacKay Memorial Hospital,
Taipei, Taiwan

E-mail: thcpci@gmail.com